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Highlights:  24 

• Hyper-resolution land surface model improves field-scale soil moisture estimates 25 

• Hyper-resolution heterogeneity leverages the soil moisture spatial variability 26 

• HRUs allow for computationally efficient merging of remote sensing observations  27 

• The merging skill is sensitive to biases in the model and satellite estimates 28 

 29 

Abstract 30 

Accurate and detailed soil moisture information is essential for, among other things, irrigation, 31 

drought and flood prediction, water resources management, and field-scale (i.e., tens of m) 32 

decision making. Recent satellite missions measuring soil moisture from space continue to 33 

improve the availability of soil moisture information. However, the utility of these satellite 34 

products is limited by the large footprint of the microwave sensors. This study presents a 35 

merging framework that combines a hyper-resolution land surface model (LSM), a radiative 36 

transfer model (RTM), and a Bayesian scheme to merge and downscale coarse resolution 37 

remotely sensed hydrological variables to a 30-m spatial resolution. The framework is based on 38 

HydroBlocks, an LSM that solves the field-scale spatial heterogeneity of land surface processes 39 

through interacting hydrologic response units (HRUs). The framework was demonstrated for soil 40 

moisture by coupling HydroBlocks with the Tau-Omega RTM used in the Soil Moisture Active 41 

Passive (SMAP) mission. The brightness temperature from the HydroBlocks-RTM and SMAP 42 

L3 were merged to obtain updated 30-m soil moisture. We validated the downscaled soil 43 

moisture estimates at four experimental watersheds with dense in-situ soil moisture networks in 44 

the United States and obtained overall high correlations (> 0.81) and good mean KGE score 45 

(0.56). The downscaled product captures the spatial and temporal soil moisture dynamics better 46 
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than SMAP L3 and L4 product alone at both field and watershed scales. Our results highlight the 47 

value of hyper-resolution modeling to bridge the gap between coarse-scale satellite retrievals and 48 

field-scale hydrological applications. 49 

 50 

1. Introduction 51 

 52 

Monitoring and forecasting of hydrological, biophysical, and ecological processes at scales that 53 

are relevant for decision making is critical for water management. For instance, soil moisture, 54 

surface temperature, evapotranspiration, snow water equivalent, irrigation water demands, crop 55 

yields, droughts, floods, erosion risk, epidemic disease outbreaks, and ecosystem services are 56 

states and processes highly linked to the fine-scale interactions between water, energy, and 57 

carbon fluxes at the land surface (Koster and Suarez 1992; Wood et al., 2011; Crow et al., 2012). 58 

While in-situ measurements are often sparse and expensive, visible-infrared and microwave-59 

based satellite retrievals offer a unique opportunity for global and continental monitoring of soil 60 

moisture, surface temperature, and evapotranspiration (Pan and Wood, 2010). There is, however, 61 

a critical gap between the coarse spatial scale of space-born remotely sensed retrievals and field-62 

scale applications. This scale gap is an issue as fine-scale hydrological interactions play a key 63 

role in the spatial-temporal dynamics of hydrological and biophysical processes. Consequently, 64 

the failure to represent landscape heterogeneity in hydrological estimates leads to deficiencies in 65 

representing the fluxes and feedbacks of the water, energy, and carbon cycles (Pachepsky et al., 66 

2003; Fallon et al., 2011; Piles et al., 2011; Chaney et al., 2018).  67 

 68 
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To overcome the spatial scale gap between satellite retrievals and water management 69 

applications, spatial downscaling techniques have been developed that use geostatistics, machine 70 

learning, land surface models (LSMs), and data assimilation (for reviews, see Reichle, 2008; 71 

Srivastava et al., 2013; Atkinson, 2013; Peng et al., 2017). Statistical and machine learning 72 

methods have been applied to downscale coarse-scale satellite retrievals based on high-resolution 73 

remotely sensed proxies. For instance, DisALEXI disaggregates GOES 5‐km surface flux 74 

estimates to 10-100 m by using high spatial resolution radiative and optical remotely sensed 75 

proxies, such as a vegetation index and surface temperature from ASTER, Landsat, and MODIS 76 

(Norman et al., 2003). More recently, for soil moisture, Sadeghi et al. (2017) proposed an optical 77 

trapezoid model based on the distribution of land surface temperature and vegetation in Sentinel-78 

2 and Landsat-8 to derive the physical relation between soil moisture and shortwave infrared 79 

reflectance. Fang et al. (2019) proposed a more data-intensive approach that uses a change 80 

detection disaggregation algorithm to combine PALS observations (Passive and Active L-band 81 

system) at 1600-m with radar backscatter from an Unmanned Air Vehicle Synthetic Aperture 82 

Radar (UAVSAR) to estimate soil moisture at 5-800 m. Ojha et al. (2019) proposed a stepwise 83 

disaggregation of SMAP to 100-m resolution using 1-km MODIS land surface temperature and 84 

NDVI and Landsat-7/8 land surface temperature. Although downscaling using statistical and 85 

machine learning approaches are trained on high-resolution remotely sensed data proxies, they 86 

often do not consider the interactions of the landscape with current meteorological conditions 87 

and thus do not resolve the physical processes (Peng et al., 2017). This leads to statistical 88 

relationships that can be satisfied locally but potentially not regionally, resulting in models that 89 

are prone to overfitting and are often do not generalize well (Liu et al., 2018). In addition, 90 

inference from high-resolution optical sensors (visible and near-infrared thermal) is affected by 91 
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atmospheric attenuation and dense vegetation (Bindlish et al., 2003; de Jeu et al., 2008; Jones et 92 

al., 2011), and it is subject to the coarse temporal resolution of their retrieved products. 93 

 94 

A well-established methodology to address the lack of physical process interpretability and 95 

model transferability is to combine radiative transfer models (RTMs) and land surface models 96 

(LSMs). RTMs use satellite-based radiative temperature observations and ancillary information 97 

on soil properties, vegetation, and meteorological conditions to model hydrological processes 98 

(Jackson 1993; Njoku and Li 1999; Drusch et al., 2005). LSMs are physically-based models that 99 

simulate hydrological processes, dynamically accounting for the water and energy balances, and 100 

sometimes also accounting for the carbon cycle, vegetation dynamics, and groundwater flows. 101 

More recently, LSMs have also accounted for human activities such as irrigation, groundwater, 102 

and surface water abstractions, and reservoir operations (Bierkens et al., 2015). The main 103 

advantage of combining LSMs and RTMs is the ability to estimate radiative variables and merge 104 

them with the satellite observations. This strategy has been widely used to assimilate land 105 

surface variables such as SMAP and SMOS soil moisture (Crow et al., 2006; Pan et al., 2014; De 106 

Lannoy et al., 2016a; Lievens et al., 2016), with more recently the SMAP-L4 using dynamic data 107 

assimilation to lead this effort (Reichle et al., 2017; Reichle et al., 2018a). Land surface models 108 

have also been used to directly assimilate surface temperature (Reichle et al., 2010; Ghent et al., 109 

2010) and snow water equivalent (Andreadis and Lettenmaier, 2006; Clark et al., 2006; De 110 

Lannoy et al., 2012; Durand and Margulis, 2013; Painter et al., 2016).  111 

 112 

Although RTMs offer unique opportunities, their accuracy is limited by the significant 113 

uncertainties in the radiative observations themselves, in the coarse-scale ancillary data, and in 114 
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the spatial scale mismatch during the calibration process (between the coarse-scale grid of the 115 

sensor and the point-scale in-situ observations). In addition, most LSMs a) still operate at 116 

relatively coarse spatial scales (> 5 km); b) do not account for the sub-grid spatial heterogeneity 117 

in soil parameters, vegetation, and topography; or c) neglect fine-scale water, energy, and carbon 118 

interactions. Remotely sensed variables, such as brightness temperature, surface emissivity, and 119 

vegetation indexes are highly sensitive to the landscape heterogeneity in terms of surface 120 

temperature, vegetation, soil moisture, and soil properties (Bindlish et al., 2003; de Jeu et al., 121 

2008; Mironov et al., 2009). Consequently, the homogeneous and coarse-scale representation of 122 

hydrological parameters and land surface processes limits the value of traditional coarse-scale 123 

LSMs to merge and downscale satellite observations to field scales.  124 

 125 

For satellite observations and models to be truly useful for water management applications, there 126 

is a critical need to combine the emerging capability of high-resolution modeling with available 127 

fine-scale physiographic data and remote sensing retrievals (Wood et al., 2011). The land surface 128 

modeling community is already taking advantage of big data analytics, high-performance 129 

computing, and hyper-resolution modeling to revolutionize hydrological simulations (Wood et 130 

al., 2011; Bierkens et al., 2015). HydroBlocks, for example, is a state-of-the-art physically-based 131 

hyper-resolution LSM that considers high-resolution ancillary datasets (30-100 m resolution) as 132 

drivers of landscape spatial heterogeneity (Chaney et al., 2016). To this end, HydroBlocks 133 

clusters areas of similar hydrological behavior into hydrologic response units (HRUs), allowing 134 

the model to efficiently simulate hydrological, geophysical, and biophysical processes at an 135 

effective 30-m resolution for continental domains. 136 

 137 
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In this study, we introduce a framework that uses hyper-resolution LSM and RTM to downscale 138 

remotely sensed hydrological and biogeophysical variables to an unprecedented 30-m spatial 139 

resolution. We demonstrate this framework by merging model and remotely sensed brightness 140 

temperature observations for fine-scale soil moisture retrieval. More specifically, the proposed 141 

framework couples the HydroBlocks LSM to a Tau-Omega brightness temperature RTM to 142 

estimate brightness temperature at fine scales; it uses Bayesian merging to combine these fine-143 

scale estimates with the 36-km Soil Moisture Active Passive (SMAP) brightness temperatures 144 

observations. We subsequentially retrieve 30-m SMAP-based soil moisture from the merged 145 

brightness temperature via the inverse RTM. Although implemented for soil moisture, this 146 

physically-based framework also allows for the downscaling of surface temperature as well as 147 

snow water equivalent to 30-m spatial resolution, and it can also be adapted for 148 

evapotranspiration and crop water requirements estimates. The proposed merging and 149 

downscaling framework is described in section 2.3. The results are evaluated at four densely 150 

monitored experimental watersheds in the United States: Little River (GA), Little Washita (OK), 151 

Reynolds Creek (ID), and Walnut Gulch (AZ). The performance of the downscaled soil moisture 152 

(as well as the SMAP L3 and the SMAP L4 products) is assessed using in-situ observations. In 153 

addition, we perform an uncertainty analysis of the Bayesian merging scheme. This work aims to 154 

inform the scientific community on (i) how hyper-resolution land surface modeling can aid the 155 

assimilation of remotely sensed observations and improve the representation of landscape 156 

heterogeneity; and (ii) the reliability of the merged brightness temperature in providing relevant 157 

soil moisture information for scientific and water management applications. 158 

 159 

 160 
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2. Data and Methods 161 

 162 

Despite the significant implications for soil moisture data for hydrological studies and water 163 

management, in-situ observations are costly and sparse. Microwave-based satellite remote 164 

sensing offers unique opportunities for large-scale monitoring, but with the limitation of the 165 

coarse spatial resolution. Given these challenges, we demonstrated the potential for using hyper-166 

resolution land surface modeling to merge and downscale remotely sensed observations. In the 167 

next sections, we present details in the implementation of the HydroBlocks LSM, the Tau-168 

Omega RTM, the Bayesian merging, and the SMAP-based 30-m soil moisture retrieval.  169 

 170 

 171 

2.1. Hydrological Modeling 172 

 173 

HydroBlocks Land Surface Model 174 

HydroBlocks is a field-scale resolving land surface model (Chaney et al., 2016) that accounts for 175 

the water, energy, and carbon balance to solve land surface processes at an effective hourly, 30-176 

m resolution. HydroBlocks leverages the repeating patterns that exist over the landscape (i.e., the 177 

spatial organization) by clustering areas of assumed similar hydrologic behavior into HRUs. The 178 

simulation of these HRUs and their spatial interactions allows the modeling of hydrological, 179 

geophysical, and biophysical processes at the field-scale (30 m) over regional to continental 180 

extents (Chaney et al., 2016). The core of HydroBlocks is the Noah-MP (Niu et al., 2011) 181 

vertical land surface scheme. HydroBlocks applies Noah-MP in an HRU framework to explicitly 182 

represent the spatial heterogeneity of surface processes down to field scale. At each time step, 183 
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the land surface scheme updates the hydrological states at each HRU; and the HRUs dynamically 184 

interact laterally via subsurface flow.  185 

 186 

To enable a realistic representation of horizontal exchanges while preserving the high 187 

computational efficiency of HRUs, HydroBlocks implements a multi-scale hierarchical 188 

clustering (HRU generation) scheme that operates at several critical spatial scales identified for 189 

the underlying hydrological, geophysical and biophysical processes (Chaney et al., 2018): 190 

 191 

(a)   Catchments: defined by topography and serve as the boundary for surface flows; 192 

(b)  Characteristics hillslopes: defined by topography and environmental similarity; 193 

(c)   Height bands: defined by the height above nearest drainage (HAND) and define the primary 194 

flow directions and temperature gradient; 195 

(d)  Tiles (HRUs): defined by multiple soil/vegetation/land cover characteristics and serve as the 196 

smallest modeling units. 197 

 198 

With this hierarchical setup, HydroBlocks handles mass/energy exchanges within a modeling 199 

unit (at a certain scale) separately from the exchanges across the units at that scale. This enables 200 

full and realistic horizontal coupling while ensuring computational efficiency.  201 

 202 

Hydrological Modeling Experiment 203 

In this study, the HydroBlocks LSM was used to simulate the land surface processes at 30-m, 1-h 204 

resolution from 2010 to 2017 using 500 HRUs per watershed. The meteorological inputs to the 205 

model consist of 3-km (1/32°), 1-h meteorological forcing from the Princeton CONUS Forcing 206 
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(PCF) dataset (Pan et al., 2016) which was developed by downscaling North American Land 207 

Data Assimilation System 2 (NLDAS-2) data in combination with several higher resolution 208 

products. The precipitation combines the Stage IV and Stage II radar/gauge products with 209 

NLDAS-2, the shortwave radiation combines GOES Surface and Insolation Product (GSIP) with 210 

NLDAS-2, while the other field variables are downscaled from NLDAS-2. An elevation-based 211 

downscaling/fusion procedure is used to ensure physical consistency and mass/energy balance. 212 

We used the 30-m DEM from the Shuttle Radar Topography Mission (STRM; Farr et al., 2007) 213 

and post-processed it to remove pits and derived slope, aspect, topographic index, flow direction, 214 

and flow accumulation values. We used the 2016 30-m land cover type from the National Land 215 

Cover Database (NLCD; Homer et al., 2015). The soil-water hydraulic parameters used in 216 

NOAH-MP were from the 30-m Probabilistic Remapping of SSURGO (POLARIS) dataset 217 

(Chaney et al., 2019). We also include 30-m Landsat-derived NDVI for 2010 (USGS; Roy et al., 218 

2010); 30-m Landsat-derived fractions of bare soil and tree cover (USGS; Hansen et al., 2013); 219 

and a 500-m MODIS-derived irrigated-land map (Global Rainfed, Irrigated and Paddy Croplands 220 

- GRIPC; Salmon et al., 2015) as additional high-resolution drivers of landscape heterogeneity 221 

for the HRU clustering.  222 

 223 

No model calibration was performed in this study to ensure that the validation of the soil 224 

moisture products is independent of any direct observation. For the RTM, we used the top 5-cm 225 

soil moisture and soil temperature estimates from HydroBlocks for the period between 2015 to 226 

2017, with 2010-2014 used for model spin-up. The clay content from POLARIS, as a by-product 227 

of the HRU clustering, was also used as fine-scale input to the emissivity module in the RTM. 228 

 229 
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2.2. Brightness Temperature Observations and Radiative Transfer Modeling 230 

 231 

Remote Sensing Observations and Retrievals: Soil Moisture Active-Passive Mission 232 

We used version 5 of the SMAP L3 Radiometer Global Daily 36-km EASE-Grid Soil Moisture 233 

product (O’Neill et al., 2018). This product provides L-band brightness temperature 234 

observations, the associated soil moisture retrievals, and the RTM ancillary data on a global, 235 

cylindrical 36-km Equal-Area Scalable Earth (EASE) grid. The SMAP brightness temperature 236 

observations we used in the merging, the soil moisture retrievals were used in the evaluation of 237 

the results, and the ancillary data was used to support the RTM modeling. We use the vertical 238 

polarization of the SMAP L-band brightness temperature observations for the merging because it 239 

tends to offer the best sensitivity to soil moisture retrieval at the top 5 cm of the soil (e.g., 240 

Jackson 1993; Njoku and Li 1999; O’Neill et al., 2018). In this study, we use only the vertically 241 

polarized brightness temperature already corrected and flagged for the quality of the retrievals, 242 

i.e. for presence of transient water, frozen ground, snow coverage, and flooding, and as well as 243 

steeply sloped topography, or for urban, heavily forested, or permanent snow/ice areas are in 244 

effect (O’Neill et al., 2018). The ancillary data of SMAP-L3, that is used in the Tau-Omega 245 

RTM in this study, comes primarily from the NASA Goddard Space Flight Center - Global 246 

Modeling and Assimilation Office (GMAO) GEOS-5 model (surface temperatures) and other 247 

satellite sensors such as MODIS (NDVI, land cover classes, open water fraction, permanent 248 

snow/ice, etc.). This data product spans from 31 March 2015 to near present, with measurements 249 

at 6:00 am and 6:00 pm passing time and 3-5 days between overpasses. 250 

 251 
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Radiative Transfer Model: SMAP Tau-Omega RTM for Brightness Temperature 252 

Satellite data products use RTMs and ancillary data to relate the sensor’s radiative measurements 253 

to physical variables, such as land surface temperature, soil moisture, and evapotranspiration. In 254 

this work, we refer to a “forward” RTM, or simply RTM, when the radiative temperature 255 

measured in space is estimated from the land surface condition and ancillary data. Conversely, 256 

we refer to the associated “inverse” RTM when land surface conditions are estimated from 257 

observed radiative variables and ancillary data. In general, each satellite may use a different 258 

RTM that was designed and calibrated to estimate a given land surface variable.  259 

 260 

The SMAP mission uses a Tau-Omega RTM to retrieve soil moisture from surface brightness 261 

temperature (�� , �) observations. SMAP retrievals can capture the soil moisture dynamics 262 

because its L-band sensor is able to measure the surface emissivity due to the contrast in 263 

dielectric properties between wet and dry soils (Entekhabi et al., 2011; Chan et al., 2016). In the 264 

Tau-Omega RTM, the brightness temperature is calculated as the sum of the canopy attenuated 265 

soil emission, the direct vegetation emission, and the vegetation emission reflected by the soil 266 

and attenuated by the canopy: 267 

�� =  ��	
� ��	
� �
�/�	� � + (1 − �)����(1 − �
�/�	� �) + (1 − ��	
�)(1 − �)����(1 −268 

�
�/�	� �)�
�/�	� �     (Eq. 1) 269 

 270 

where ��	
�is the soil emissivity, � is the single-scattering albedo within the canopy, � is the 271 

optical depth of the canopy, � is the look angle from nadir, ��	
� is the soil temperature, and ���� 272 

is the vegetation temperature. In this Tau-Omega RTM, the soil emissivity is estimated based on 273 

the soil moisture and clay content using the Mironov soil dielectric model (Mironov et al., 2009). 274 
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Here, for simplicity, a single surface temperature was used to represent the average of the 275 

vegetation and surface temperatures. The technical details on the SMAP algorithm and the 276 

ancillary data processing can be found in the SMAP Handbook (Entekhabi et al., 2014) and 277 

product Algorithm Theoretical Basis Documents (O’Neill et al., 2018). 278 

  279 

2.3. Bayesian Merging and Downscaling Framework 280 

 281 

The merging and downscaling scheme proposed in this work relies on a three-step process. First, 282 

we coupled HydroBlocks and the Tau-Omega RTM to predict brightness temperature at the same 283 

fine-scale of HydroBlocks. Then we use Bayes’ Theory to merge these fine-scale brightness 284 

temperature estimates with the coarse-scale SMAP brightness temperature observations. In the 285 

end, once the brightness temperature observations are merged, the inverse RTM is used to 286 

retrieve the downscaled soil moisture. Figure 1 summarizes the workflow for the brightness 287 

temperature merging and the retrieval of the downscaled soil moisture. 288 

 289 
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 290 

Figure 1. Flow diagram illustrating the HydroBlocks-RTM merging framework. This framework 291 

is applied to merge the 36-km SMAP L3 observed brightness temperature and subsequently 292 

retrieve the downscaled soil moisture. It uses the HydroBlocks land surface model, the Tau-293 

Omega radiative transfer model, and Bayesian merging in the HRU-space to obtain 30-m soil 294 

moisture estimates. 295 
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 296 

Specificaly, HydroBlocks LSM was used to estimate hourly top 5-cm soil moisture and soil 297 

temperature, as well as clay content from POLARIS — averaged at the HRU — as a by-product 298 

of the HydroBlocks clustering analysis. We used the SMAP L3 surface temperature to bias 299 

correct HydroBlocks surface temperature prior to the brightness temperature estimation at fine-300 

scale (not included in Figure 1). This was an optional step that was adopted to reduce the 301 

systematic difference between SMAP observed and HydroBlocks-RTM estimated brightness 302 

temperatures. And although bias correcting the surface temperature a priori neglects the 303 

connectivity between HydroBlocks soil moisture and the new surface temperature, the merging 304 

is only performed considering the brightness temperature. Also, the performance of the 305 

downscaled soil moisture was found to be superior with this surface temperature bias correction.  306 

 307 

As a first step, we estimated the brightness temperature using the HydroBlocks-RTM framework. 308 

For input data to the RTM, we used the top 5-cm soil moisture and clay content from 309 

HydroBlocks; the 30-m bias-corrected surface temperature; and the 36-km vegetation optical 310 

depth, roughness length, and albedo from SMAP-L3 ancillary data. For simplification, we 311 

assumed that the above-mentioned 36-km SMAP ancillary data is homogeneously distributed 312 

within the SMAP 36-km grid cell. By ensuring consistency with SMAP L3 ancillary data, we 313 

leave the differences in the model and the observed brightness temperatures to differences in 314 

mostly soil moisture. This helps to isolate the soil moisture signal from the ancillary data. In the 315 

second step, we merge the 30-m HydroBlocks-RTM brightness temperature with the 36-km 316 

coarse-scale SMAP brightness temperature observations using Bayesian merging (details in the 317 

sequence). Once merging was completed, the last step relied on applying the 30-m merged 318 
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brightness temperature, along with the above-mentioned ancillary data, as inputs into the inverse 319 

Tau-Omega RTM to retrieve the final downscaled soil moisture.  320 

 321 

The primary motivation for this three-step scheme (RTM, Bayesian merging, and inverse RTM) 322 

was to isolate the non-linear relationship between soil moisture and brightness temperature from 323 

the merging process. This three-step approach was particularly helpful as (i) Gaussian-based 324 

merging and assimilation techniques, such as Bayesian merging, require linearity between the 325 

assimilated variables for optimality, and (ii) it allowed us to merge the observed SMAP 326 

brightness temperature directly, instead of solely merging the SMAP soil moisture retrieval 327 

product on HydroBlocks soil moisture estimates.  328 

 329 

Bayesian Merging of Brightness Temperature  330 

Bayes’ Theory was used to merge the HydroBlocks-RTM and SMAP brightness temperatures 331 

given its ability to obtain more reliable estimates from noisy observations or estimates. Similar to 332 

proposed by Zhan et al. (2006), our merging approach follows a Kalman filter-based scheme but 333 

with the merging performed entirely in the HydroBlocks’ HRU-space (instead of regular grids) 334 

and with each time being merged independently. Figure 2 illustrates the merging workflow. In 335 

this context, the optimal brightness temperature ��
� for all the HRUs in the domain at time t can 336 

be derived from the fine-scale HydroBlocks-RTM brightness temperature forecast ��

 (model 337 

forecast), updated according to the state update equation: 338 

��
� = ��


  +  �   !�  –  #��

 $                                        (Eq. 2) 339 

In this system, ��
� and ��


 have dimensions %ℎ'( × 1, where nhru is the total number of HRUs 340 

in the domain. !� is the vector containing the 36-km SMAP brightness temperature observations 341 
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at time t. !� has dimensions %* × 1, where ns is the total number of SMAP grids in the domain. 342 

H is the observation operator that maps HydroBlocks-RTM brightness temperatures (��

) from 343 

the HRUs scale to the SMAP grid scale. H has dimensions %* × %ℎ'(, and it uses a Gaussian-344 

shaped weighted area to account for the relative contribution of each HRU to each SMAP grid. 345 

Since the merging is performed using model and observed brightness temperatures, H is in 346 

practice a linear Gaussian scaler. Thus, #��

 is the estimate of HydroBlocks-RTM brightness 347 

temperature at the observation scale and it has dimensions %* × 1. The difference in brightness 348 

temperature between the SMAP observation and HydroBlocks-RTM forecast in the observation 349 

space (!�  –  #��

) is herein called the innovation term. K is the gain, and it is calculated based on 350 

the relative magnitude between the model and the observation uncertainties: 351 

� =  +,-

,+,-�.
           (Eq. 3) 352 

In this merging framework, K operates in the HRU-space and it has dimensions %ℎ'( × %*. In 353 

Eq. 3, R is the observation error covariance matrix and P is the forecast error covariance matrix. 354 

The observation error covariance matrix has its diagonal elements set to the SMAP radiometer 355 

uncertainty of 1.3 K (Piepmeier et al., 2017), with the off-diagonal set to zero assuming the 356 

SMAP observation errors were uncorrelated with each other. The R matrix has dimensions %* ×357 

%*. To estimate the errors in the brightness temperature forecast, we consider the model 358 

uncertainty and the brightness temperature sensitivity. HydroBlocks has a soil moisture RMSE 359 

of approximately 0.05 m³/m³, and based on the brightness temperature sensitivity of 1 K per 0.01 360 

volumetric soil moisture for X band (SMAP handbook; Entekhabi; 2014), we estimate the error 361 

in the brightness temperature forecast to be around 52 K2. The P forecast error covariance matrix 362 

has dimensions %ℎ'( × %ℎ'(. We assume that HRUs belonging to the same SMAP grid have 363 

correlated errors. Conversely, if an HRU pair belongs to different SMAP grids, the errors are 364 
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assumed to be uncorrelated. Thus, in the P matrix the entries of correlated HRU pairs were set to 365 

52 K2, and the entries of uncorrelated HRU pairs were set to zero.   366 

 367 

 368 

Figure 2. The proposed approach uses Bayesian merging to combine the HydroBlocks-RTM 369 

fine-scale brightness temperature estimates (��

) with the 36-km SMAP observed brightness 370 

temperature (!�) to obtain the optimal brightness temperature estimate (��
�). In this work, the 371 

merging is performed in the HRU-space, instead of regular grids.  372 

 373 

When Eq. 2 is applied to dynamic systems, with both system states and error covariances are 374 

updated sequentially, the approach is called the Kalman filter. However, in our study, the 375 

merging is performed at each time step independently, and the system states and error 376 

covariances are not updated sequentially. In this case, as highlighted by Zhan et al. (2006), Eq. 2 377 

is an implementation of Bayes’ Theory. 378 

 379 
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In our results, we often observed a systematic bias between HydroBlocks and SMAP soil 380 

moisture, as well as a bias between HydroBlocks-RTM and SMAP brightness temperatures. This 381 

bias between forecast and observed brightness temperature is called the forecast bias hereafter. 382 

Gaussian-based merging approaches are only optimal when there is no forecast bias between the 383 

variables and when both variables have Gaussian-distributed errors that are independent and 384 

uncorrelated (Anderson and Moore, 2005). And, consequently, this forecast bias leads to non-385 

optimal estimates. A common procedure is to remove the forecast bias before the merging, as it 386 

showed to improve the optimality of radiative variables assimilation (Reichle et al., 2004; De 387 

Lannoy et al., 2007; Kumar et al., 2012; De Lannoy and Reichle, 2016b). We calculated the 388 

forecast bias seasonally, using a 3 hourly 4-month window moving average. The 4-month 389 

window was identified by testing windows of sizes from 1-12 months, and the 4-month window 390 

showed the best performance. Once estimated the forecast bias, the merging is performed as 391 

follows: 392 

��
� = ��


  +  �  ( !�  –  #��

) − /01*2	3��4��  $         (Eq. 4) 393 

Similar data merging approaches have been applied previously at spatial resolutions up to 1-km 394 

using land surface models and dynamic assimilation for SMAP, SMOS, and AMSR-E (Zhan et 395 

al., 2006; Durand and Margulis, 2013; Sahoo et al., 2013; Pan et al., 2014; Lannoy et al., 2016a; 396 

De Lannoy et al., 2016b; Lievens et al., 2016; Lievens et al., 2017). This study builds on these 397 

previous efforts to enable hydrological estimates at 30-m spatial resolution. Here, the HRU 398 

concept used in HydroBlocks is leveraged to perform both the land surface modeling and the 399 

data merging in the HRU space. This implies considering the irregular spatial distribution and 400 

contribution of each of the HRU and its surroundings when merging the brightness temperatures. 401 

While more complex, working in the HRU space reduces the dimensionality of the system. For 402 



19 

instance, one SMAP grid of 36-km by 36-km contains ~1.44 million 30-m grid cells. By 403 

implementing the HRU-based merging, we reduce the dimension of the system by at least two 404 

orders of magnitude, with a resulting ~1500-2000 HRUs per SMAP grid. In this way, HRUs 405 

allow for highly efficient distributed computing, and it lowers the computational and data storage 406 

requirements in comparison to fully distributed setups. 407 

 408 

2.4. Evaluation and Sensitivity Analysis 409 

 410 

Framework Evaluation 411 

To assess the process representativeness and consistency of the hyper-resolution-derived soil 412 

moisture estimates, we evaluated the soil moisture products against in-situ soil moisture 413 

observations. The four sites evaluated in this study were Little River (GA), Little Washita (OK), 414 

Reynolds Creek (ID), and Walnut Gulch (AZ) experimental watersheds (Figure 3). These sites 415 

were chosen because of their dense in-situ soil moisture networks and their diversity in terms of 416 

climate, topography, and vegetation. We used a total of 60 probes from the SMAPVEX15 417 

(https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX15/) and SMAPVEX16 418 

(Colliander et al., 2016; Colliander et al., 2017) campaigns.  419 

 420 
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 421 

Figure 3. The four experimental watersheds in which we evaluate the downscaled soil moisture 422 

estimates. The black points represent in-situ soil moisture probes.  423 

 424 

In addition, we compared the performance of our results with the state-of-the-art SMAP L4 425 

Global 3-hourly 9 km EASE-Grid Surface Soil Moisture Analysis Update product (Reichle et al., 426 

2018a). The SMAP-L4 product is computed by using a dynamic assimilating the SMAP 427 

brightness temperatures into the NASA Catchment land surface model (Koster et al., 2000) using 428 

a customized version of the Goddard Earth Observing System (GEOS) land data assimilation 429 

system (Reichle et al., 2014; Reichle et al., 2018a).  430 

 431 

We compared the in-situ observations with the collocated grid cell of the 36-km SMAP L3 soil 432 

moisture, 9-km SMAP L4 soil moisture, 30-m HydroBlocks soil moisture, and 30-m downscaled 433 

soil moisture, at the point and watershed-average scales. We evaluated the soil moisture 434 

estimates in terms of the root mean squared error (RMSE); unbiased root means squared error 435 

(ubRMSE); and Kling-Gupta efficiency (KGE; Kling et al., 2012). The KGE score combines the 436 

linear Pearson correlation (⍴), the bias component (6) defined by the ratio of estimated and 437 
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observed means, and the variability component (7) as the ratio of the estimated and observed 438 

coefficients of variation: 439 

 440 

�89 =  1 − :(⍴ − 1); + (6 − 1); + (7 − 1);                                                            (Eq. 5) 441 
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 443 

where µ and σ are the distribution mean and standard deviation. To remove the impact of frozen 444 

soils in the evaluation, we masked the soil moisture estimates when the LSM soil temperature 445 

was below 0 degrees Celsius. 446 

 447 

In addition, to quantify the skill of the soil moisture products in representing the spatial 448 

variability of the observations, we calculated the spatial standard deviation for each watershed. 449 

The spatial standard deviation was calculated at each time step only when at least 10 in-situ 450 

observations and all the soil moisture products were available simultaneously. The entry data for 451 

each soil moisture product was identified based on the collocated grid cell of each in-situ 452 

observation.  453 

 454 

Sensitivity Analysis 455 

As mentioned previously, the forecast bias between the satellite observed and modeled 456 

brightness temperature may lead to sub-optimal merging and therefore it should be removed a 457 

priori. We observed that, for different watersheds, the merged soil moisture estimates showed 458 

different performance with or without the long-term brightness temperature forecast bias 459 

removal. For instance, at some watersheds the merging performed well without the forecast bias 460 
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term, whilst for other watersheds, the merging performed very poorly without the forecast bias 461 

term. To investigate this disparity, we quantified the sensitivity of the downscaled soil moisture 462 

to the correction of the brightness temperature forecast bias by expanding Eq. 4 to include 463 

weights w1 and w2: 464 

��
� = ��


  +  �  ( !�  –  #��

)CD − (/01*2	3��4��)C; $         (Eq. 7) 465 

 466 

In specific, by varying the w1 and w2 weights, we quantified the sensitivity of the merged 467 

brightness temperature (��
�) with respect to the instantaneous contributions (via innovation term, 468 

!�  –  #��

) and the long-term contributions via the forecast bias. In this way, the higher the w1 469 

weight, more weight is given to the instantaneous contributions of SMAP L3 brightness 470 

temperature. On the other hand, the higher the w2 weight, more weight is given to the long-term 471 

contributions of the forecast bias (of HydroBlocks with respect to SMAP L3) . This allows us to 472 

essentially investigate which temporal scale information that is contained in the observations we 473 

are allowing to influence the data merging. For this analysis we used the KGE, as well as the 474 

temporal soil moisture bias, variability, and correlation components to quantify the uncertainty in 475 

the retrieved downscaled soil moisture for each of the four watersheds. This analysis allows 476 

quantifying the errors associated with merging uncertain and biased model estimates and 477 

observations by accounting for the different contributions of the instantaneous and long-term 478 

temporal differences. Based on the outcomes of this sensitivity analysis, the results in this paper 479 

were carried out using a 0.5 weight for w1 and w2. 480 

 481 

 482 
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3. Results 483 

 484 

3.1. Merging and Downscaling Performance 485 

 486 

Figure 4 shows the time series of HydroBlocks LSM, SMAP L3, SMAP L4, and the downscaled 487 

soil moisture products averaged at the in-situ observation network locations and the respective 488 

collocated grid-cell for each watershed during 2016. HydroBlocks represented well the timing of 489 

the soil moisture peaks and the overall seasonal wet and dry dynamics with performance 490 

comparable or better to SMAP L3 and SMAP L4. However, SMAP L4, HydroBlocks, and the 491 

downscaled product generally overestimated soil moisture at dry sites, such as Walnut Gulch. 492 

SMAP L3 represented well the soil moisture dry downs in Little Washita and Walnut Gulch. 493 

SMAP L3 shows very high and low biases for the Little River and Reynolds Creek basins, 494 

respectively. Overall, in terms of temporal dynamics, the downscaled product offered a good 495 

compromise between HydroBlocks and SMAP L3 and L4 soil moisture products. 496 

 497 
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 498 

Figure 4. Time series of daily soil moisture averaged at the in-situ observational network and 499 

compared with the basin averaged collocated grid cells. The black line shows the soil moisture as 500 

observed by the in-situ probes; the red line shows the HydroBlocks LSM top 5-cm soil moisture; 501 

the orange line shows the SMAP L4 soil moisture; the blue line shows the SMAP-L3 soil 502 

moisture and the green line the downscaled soil moisture as a result of merging HydroBlocks and 503 

SMAP L3 brightness temperatures. The right panel shows the respective scatter plots, which 504 

summarize the distribution of all records of each product in comparison to the observations for 505 

each evaluation site. 506 
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 507 

Figure 5 shows the spatial distribution of soil moisture in terms of the annual mean for the 508 

HydroBlocks LSM, SMAP L3 and L4, the downscaled product, and the in-situ observations. As 509 

expected, the spatial heterogeneity accounted for by HydroBlocks is reflected in the spatial 510 

distribution of the downscaled soil moisture product. The model represented well the wet soil 511 

conditions at the valleys and river channels; as well as the drier agricultural fields surrounding 512 

the rivers in the Little Washita and Little River watersheds, and the high soil moisture spatial 513 

dynamics at the Little River watershed. The SMAP L3 retrievals, however, had only one or two 514 

grid cells covering each of the sites, with no spatial heterogeneity. SMAP L4 captures well the 515 

spatial pattern of drier and wetter conditions at Little Washita. The downscaled soil moisture 516 

follows the spatial pattern of HydroBlocks; however, the intensities are adjusted according to the 517 

merged SMAP L3 brightness temperature. Reynolds Creek showed to be the watershed where 518 

merging the SMAP L3 brightness temperature contributed the most. Figure 6 shows a zoom box 519 

of 10 km by 10km of the merged soil moisture in each of the watersheds.  520 

 521 
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 522 

Figure 5. Mean annual soil moisture of the SMAP L3 product (first column); the SMAP L4 523 

product (second column); the HydroBlocks LSM (third column); the downscaled product via the 524 

Bayesian merging (fourth column); and the in-situ observations network (overlaid points) at each 525 

of the four evaluation sites (lines).  526 

 527 
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  528 

Figure 6. The merged and downscaled soil moisture at Little River, Little Washita, Walnut 529 

Gulch, Reynolds Creek. Each panel shows the soil moisture zoomed in to a 10 km by 10 km 530 

domain area for a given time step. 531 

 532 

It is worth highlighting that Figure 5 shows the local impact on soil moisture of the merging of 533 

HydroBlocks and SMAP L3 brightness temperatures. However, the Gaussian operator (H), used 534 

in the merging, was applied to the brightness temperature within a 36-km radius from each HRU. 535 

In addition, SMAP and HydroBlocks used different clay content and surface temperature 536 

ancillary data. Because of the highly non-linear behavior of the soil dielectric properties, the 537 

relationship between the soil moisture before and after the merging is not always linear.  538 

 539 
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This spatial heterogeneity, shown in Figure 5 and Figure 6, was quantified in terms of the spatial 540 

standard deviation. Figure 7 shows the distribution of the spatial standard deviation calculated at 541 

each time step for the in-situ probe and the collocated grid cell of each soil moisture product. We 542 

only calculated the spatial standard deviation at a given time when at least data of 10 probes and 543 

at the respective collocated grid cells were available simultaneously. SMAP L3 was not included 544 

in the analysis because each watershed only covers 1-2 grids. In comparison to SMAP L4, 545 

HydroBlocks often showed a higher spatial standard deviation. This spatial variability from 546 

HydroBlocks was also transferred to the downscaled product. The observed soil moisture spatial 547 

variability at all the watersheds was still much higher than that estimated by any of the soil 548 

moisture products, highlighting the lack of additional spatial dynamics that are still not being 549 

accounted. 550 

 551 

 552 

Figure 7. Distribution of the soil moisture spatial standard deviation. The boxplots show the 553 
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distribution of the soil moisture spatial standard deviation at each time step for the in-situ 554 

observations (grey) and the respective collocated grid cells of SMAP L4 (orange), HydroBlocks 555 

LSM (red), and the downscaled (green) soil moisture products. The spatial standard deviation at 556 

a given time was only calculated when data for at least 10 probes and the respective collocated 557 

grid cells were available simultaneously. The total number of data pairs in time for each 558 

watershed is reported in the bottom right of the graph.  559 

 560 

In Figure 8, we summarized the overall performance of the soil moisture products. The SMAP 561 

L3 performance varied significantly across the watersheds. At Walnut Gulch and Little Washita, 562 

SMAP L3 showed low bias, good correlation, and good KGE scores. But it performed poorly at 563 

Little River with a strong wet bias. SMAP L4 showed an overall low ubRMSE, but an overall 564 

high RMSE and coefficient of variations far from optimal, resulting in often the lowest KGE 565 

scores. HydroBlocks, on the other hand, performed well at cold to temperate and humid 566 

condition sites such as Reynolds Creek and Little River; but with poor performance at Little 567 

River and Walnut Gulch. These poor KGE performances are mostly driven by the bias ratio 568 

component, which is very sensitive to low soil moisture content. Nonetheless, the temporal 569 

dynamics and spatial distribution of the modeled and merged soil moisture at Walnut Gulch 570 

showed reasonable dynamics (Figure 4 and Figure 5). The HydroBlocks model showed overall 571 

good skill in terms of temporal correlation and coefficient of variation. However, the model 572 

consistently overestimates soil moisture at all the sites except Little Washita.  573 

 574 

The downscaled product presented a consistent lower RMSE and ubRMSE, averaging out the 575 

errors in both SMAP and HydroBlocks and even improving both products’ performance. 576 
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Merging brightness temperatures observations improved soil moisture temporal correlation and 577 

ubRMSE in all the watersheds. However, the downscaled soil moisture often added value to the 578 

SMAP L3 estimates if the HydroBlocks performance is similar or higher than SMAP L3 579 

estimates; otherwise, the performance is degraded, such as seen for Walnut Gulch. This was 580 

investigated further in the uncertainty analysis in Section 3.2. Although the downscaled product 581 

did not always perform the best in each metric individually, we observed an overall improvement 582 

of SMAP L3 and SMAP L4 estimates. The presented merging framework shows the potential to 583 

consolidate both SMAP and HydroBlocks estimates with an overall better accuracy than either 584 

independently. With respect to SMAP L3, the merged soil moisture showed the most substantial 585 

improvement in the Little River watershed, where the KGE score of SMAP rose from -0.78 to 586 

0.47. 587 

 588 

589 

Figure 8. Soil moisture evaluation against in-situ observations. We calculated the watershed 590 

spatial average using the soil moisture values at the collocated grid cell of the in-situ 591 



31 

observations. The analysis covers the period between 2015-2017. The soil moisture products 592 

were evaluated in terms of its long-term of the mean squared error (RMSE) and the unbiased 593 

RMSE (ubRMSE); as well as the bias ratio (β), the variability ratio (7), and the linear Pearson 594 

correlation (ρ), which represents the components of the Kling-Gupta score (KGE).  595 

 596 

The soil moisture performance at the in-situ level was evaluated in terms of the KGE score as a 597 

summary metric (Figure 9). SMAP L3 performance was fairly consistent across all probes in 598 

each basin, either estimating the values very well as in Walnut Gulch or very poorly, as in Little 599 

River, with minimal spatial variability due to its coarse resolution. SMAP L4 showed to improve 600 

SMAP-L3 the performance is most of the sites, exception for Walnut Gulch. The merged product 601 

showed significant performance improvement in comparison to SMAP-L3 and SMAP-L4 at 602 

most of the in-situ sites. In comparison to HydroBlocks LSM, the merged product also shows 603 

overall improvement, but with smaller intensities. The exception is the Reynolds Creek, where 604 

SMAP-L3 merging degraded the model performance in some locations, but it still performed 605 

overall better than SMAP-L3 and SMAP-L4. 606 

  607 
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 608 

Figure 9. KGE score of the soil moisture products evaluated against each in-situ probe. The 609 

columns show the KGE score for SMAP L3, the SMAP L4, HydroBlocks LSM, and the 610 

downscaled soil moisture. The best skill performance in terms of KGE is shown in green. The 611 

three last column shows the difference in KGE between the downscaled soil moisture and the 612 

SMAP L3, the SMAP L4, and the HydroBlocks LSM. The increase in performance is shown in 613 

blue.  614 

 615 

3.2. Sensitivity Analysis of the Merging Framework  616 

 617 

As seen in Figure 8 and Figure 9, the performance of the model and satellite soil moisture 618 

estimates varied from watershed to watershed. When the bias in the model or the satellite soil 619 

moisture estimates was significant, and we have no prior knowledge of which performs better at 620 

a given location, it is difficult to predict if the merged soil moisture will be better. As mentioned 621 

previously, this is a consequence of the bias between the modeled and satellite brightness 622 
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temperatures that leads to non-optimal merging. Here we aim to assess how much the bias 623 

between the satellite and the model brightness temperature at different temporal scales affects the 624 

uncertainty in the merged soil moisture retrieval. To this end, we quantified the temporal 625 

correlation, bias ratio, coefficient of variation ratio, and KGE score of the merged soil moisture 626 

when the brightness temperatures were merged using different w1 weights on the instantaneous 627 

contributions (via the innovation) and different w2 weights on the long-term contributions (via 628 

the forecast bias), as expanded in Eq. 7. Figure 10 shows the results of this sensitivity analysis on 629 

the uncertainties associated with the merging framework using different temporal scales weights. 630 

 631 
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 632 

 633 

Figure 10. The sensitivity of the merged soil moisture to changes in the contributions of the 634 

instantaneous and the long-term differences in model and observed brightness temperature. The 635 

sensitivity was performed by varying the weights in the innovation term (w1) and the forecast 636 

bias term (w2) when merging HydroBlocks-RTM and SMAP brightness temperatures. We 637 

evaluated the merged soil moisture using Pearson correlation, bias ratio, coefficient of variation 638 

ratio, and KGE score (lines) for each of the watersheds (columns). Each panel evaluates the 639 

merged soil moisture using different w1 and w2 values (varying from 0 to 1) in the brightness 640 
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temperature merging. The central dot indicates the performance of the merged soil moisture 641 

product using 0.5 weight for w1 and w2. For correlation and KGE, the optimal merging is shown 642 

in green; for the bias ratio and the variability component, the optimal is shown in grey. 643 

 644 

From Figure 10, we can observe that the soil moisture temporal correlation was insensitive to 645 

changes in the instantaneous (w1) and long-term (w2) contributions when merging brightness 646 

temperature. However, when there is a bias between the observed and modeled brightness 647 

temperatures, there was a clear linear relationship that yields an optimal 1.0 bias ratio and 648 

variability ratio for a set of w1 and w2 weight pairs. This linear pattern can be also observed in 649 

the KGE score. In terms of the instantaneous and the long-term contributions of the brightness 650 

temperatures differences, the merged soil moisture was particularly sensitive to the model and 651 

satellite estimates at the Little River and Walnut Gulch watershed. At Walnut Gulch, 652 

HydroBlocks showed a wet bias and the SMAP L3 estimates were more similar to the 653 

observations, and as a result, the merged soil moisture performance was optimal at w1 = 1.0 and 654 

w2 = 0.0. Therefore, forecast bias correction would worse the performance at this site. For Little 655 

River, however, SMAP L3 showed a very high soil moisture bias, and HydroBlocks performed 656 

better across all metrics, with estimates very similar to the observations. For this watershed, the 657 

optimal merging performance was found when the forecast bias was added to the estimates with 658 

w1 = 0.5 and w2 = 0.8. Here, we clearly see that the forecast biases between the estimates favor 659 

HydroBlocks, but the non-zero mean anomaly leads to uncertainties in the data merging. For 660 

Little Washita and Reynolds Creek, the brightness temperature and soil moisture biases between 661 

HydroBlocks and SMAP were small, and therefore, the merged soil moisture was less sensitive 662 

to different weights on the innovation and forecast bias terms. Although there is a linear pattern 663 
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in how KGE varies for w1 and w2 weights in Little River and Walnut Gulch, the intercept at 664 

which the w1 and w2 pair leads to higher performance of the merged soil moisture estimates 665 

varies from watershed to watershed. Based on the four watersheds evaluated, there is no optimal 666 

temporal weight across all the sites. Thus, the results of this study were carried out using a 0.5 667 

weight for w1 and w2 as a compromise between the instantaneous and the long-term 668 

contributions of the differences between the observed and the forecasted brightness temperatures. 669 

We discuss this in detail in section 4.3. 670 

 671 

 672 

4. Discussion 673 

 674 

4.1. Overview of the strengths of the downscaling framework 675 

We presented a merging framework to downscale soil moisture to an unprecedented 30-m spatial 676 

resolution. By using field-scale physically-based land surface modeling, the merged product 677 

takes into account the interaction of soil moisture with elevation, aspect, soil properties, 678 

vegetation, subsurface water dynamics, and climate. This is a critical benefit, because simulating 679 

land surface processes and these interactions at fine scales lead to an enhanced representation of 680 

the water and energy balances as well as carbon estimates (Piles et al., 2011; Falloon et al., 681 

2011). These physical interactions are generally not accounted for when using machine learning 682 

and statistical downscaling approaches (Liu et al., 2018). In addition, our framework merges the 683 

directly observed brightness temperature instead of the post-processed soil moisture retrieval, 684 

which is subject to uncertainties and non-linearities within the RTM (discussed later in this 685 

subsection). The computational efficiency of the proposed framework is also a significant 686 
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advantage. By clustering high-resolution proxies of the drivers of the landscape heterogeneity 687 

into HRUs, HydroBlocks efficiently accounts for most of the landscape spatial variability with a 688 

minimal computational cost, as demonstrated in Chaney et al. (2016).  689 

 690 

In the context of using remote sensing to monitor hydrological processes, this work major 691 

contribution is a framework capable of modeling and merging hydrological estimates from field-692 

scale to continental domains. Merging and potentially assimilating remotely sensed observations 693 

across different scales can contribute to elucidate the scaling behavior of hydrological processes 694 

from the point scale to the footprint scale of spaceborne sensors (Western et al., 2002). Proper 695 

characterization of the scaling behavior of hydrological processes, such as soil moisture, can aid 696 

the calibration and evaluation of RTMs and satellite retrieval products. Although here we 697 

introduce a merging and downscaling framework applied to each time step independently, this 698 

work paves the way towards a hyper-resolution earth system modeling for multiscale dynamic 699 

data assimilation. The proposed HRU-based merging could be implemented with the system 700 

states and error covariances being updated sequentially, as it is done using traditional and 701 

ensemble Kalman filters, as well as other similar dynamic assimilation approaches (Lievens et 702 

al., 2016; Reichle et al., 2018a).  703 

 704 

4.2. Uncertainties and caveats of the approach 705 

Despite the promising results and potential further applications, the merging framework has 706 

limitations. In this section, we discuss the implications of the weaknesses of the land surface and 707 

radiative transfer model, as well as the uncertainties of the corresponding ancillary data. 708 

 709 
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Land surface modeling limitations 710 

Modeled hydrological processes, including soil moisture, can be sensitive to uncertainties in the 711 

topography, land cover, soil properties, and meteorological input data, as well as to deficiencies 712 

of the physical process parameterizations in the LSM. Meteorological inputs, especially 713 

precipitation, are known to be one of the largest sources of uncertainties (Wanders et al., 2012; 714 

Beck et al., 2016). Although the 3-km NLDAS2-derived dataset accurately represented the 715 

temporal dynamics of the soil moisture peaks (Figure 4), there is an overall wet bias in the model 716 

estimates (Figure 7). Merging in-situ precipitation observations to the meteorological input data 717 

can reduce the soil moisture uncertainties, as demonstrated in Chaney et al. (2015). In addition, 718 

there are uncertainties related to the soil properties characterization and the process-719 

representation of the soil-water hydraulics, as both control soil moisture levels and dry-down 720 

dynamics. The impact of these limitations is quantified in terms of the ubRMSE and the 721 

coefficient of variation in Figure 7. The soil moisture estimates can also be impacted by 722 

misclassification of land cover as well as improper phenology and root structure representation 723 

(Dahlin et al., 2015), especially in dry conditions. In terms of model representativeness, a 724 

significant source of uncertainties is the lack of representation of human activities, such as 725 

irrigation, reservoir operation, groundwater pumping (Wanders and Wada, 2015; Pokhrel et al., 726 

2017), that can dramatically influence soil moisture dynamics, especially at fine scales.  727 

While merging SMAP observations can help to better estimate soil moisture over largely 728 

irrigated domains, an alternative is to use more statistical data-driven approaches, such as 729 

proposed in Fang et al. (2019) and Ojha et al. (2019). More generally, a common way to 730 

overcome data and model limitations is to calibrate these soil-water parameters against soil 731 

moisture observations, river discharge, or even fine-scale, satellite-derived land surface 732 
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temperature. Previously, Cai et al. (2017) showed that HydroBlocks soil moisture estimates have 733 

excellent performance under calibrated conditions. Here, however, we choose to follow an 734 

independent evaluation to assess the merged product skill at locations where there are high 735 

uncertainties in the ancillary data, or there is a lack of in-situ observations of soil moisture. A 736 

potential alternative to reduce the LSM uncertainties is the use of ensemble model simulations 737 

and ensemble Kalman filtering to account for the distribution of possible soil moisture states. 738 

However, this requires multiple LSM-RTM simulations and hence, will be computationally 739 

costly. 740 

 741 

Radiative transfer modeling limitations 742 

In terms of the radiative transfer modeling, uncertainties are mainly due to the brightness 743 

temperature observations and ancillary remote sensing data used to parameterize the Tau-Omega 744 

brightness temperature RTM. The uncertainties in the measurements are linked to, among others, 745 

the inclination angle, the sensor penetration depth, the differences between the brightness 746 

temperature measured using the vertical and horizontal polarization, as well as the nature of the 747 

sensor retrieval that needs to be further gridded to a regular grid (O’Neill et al., 2018). Similar to 748 

LSMs, soil properties can influence the brightness temperature and soil moisture retrievals, as 749 

microwave measurements can penetrate deeper at increasing soil sand content and the presence 750 

of large macropores (Owe et al., 1998; Casa et al., 2013). Soil emissivity properties also depend 751 

on accurately specified clay content for proper soil moisture estimates (Mironov et al., 2009). 752 

Vegetation and land cover characteristics also play a role, including uncertainties derived from 753 

land cover class, vegetation index, albedo, vegetation optical depth, and surface roughness. 754 

These ancillary data are often retrieved at a high resolution but aggregated to a coarser scale to 755 
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match the footprint of the brightness temperature sensor. This is can be an issue for hyper-756 

resolution RTM-based retrieval algorithms, as coarse-scale aggregated ancillary data (i) 757 

underestimates the spatial heterogeneity of the landscape, and (ii) it may induce processes 758 

inconsistencies when data is combined with fine-scale LSM estimates, such as the soil moisture 759 

and surface temperature. We expect that higher resolution and better accuracy of albedo, 760 

vegetation optical depth, and roughness length would potentially lead to improvements in 761 

downscaled soil moisture performance. In addition, there are limitations with the Tau-Omega 762 

RTM itself. Schwank et al. (2018) discuss the current implementation of SMAP and SMOS Tau-763 

Omega RTMs and its limitations over dense vegetation sites, among others. Due to these 764 

limitations, brightness temperature estimates from RTMs can be biased, requiring calibration to 765 

properly represent the soil moisture temporal dynamics (De Lannoy et al., 2013). In the context 766 

of hyper-resolution RTM modeling, further work is required to quantify the sensitivity and 767 

uncertainties of each of these coarse-scale RTM ancillary data within the HydroBlocks-RTM 768 

framework. Ideally, coupling HydroBlocks to an RTM that has been calibrated for fine-scale 769 

RTM ancillary data would improve the consistency between the modeled hydrological variables 770 

and the ancillary data, this may lead to improvements in the brightness temperature estimates, as 771 

well as improved performance of the final downscaled soil moisture. 772 

 773 

4.3. General results and implications for soil moisture applications/transferability 774 

The proposed merging and downscaling framework represent the spatiotemporal dynamics of the 775 

soil moisture observations. As shown in Figure 4 and Figure 9, at the point and watershed levels, 776 

the merging framework consistently improves the SMAP L3 estimates. In addition, the 777 

downscaled product is able to represent the soil moisture spatial variability; with most of the 778 
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contribution coming from HydroBlocks’ spatial representation of the landscape heterogeneity 779 

(Figure 5 and Figure 7). An exception to the overall good performance is for the Walnut Gulch 780 

watershed, where neither the model, the merged soil moisture, and SMAP L4 was able to resolve 781 

the relatively high soil moisture bias ratio with the same performance of SMAP L3. SMAP L3 782 

estimates are, however, known for their overall dry bias (Chan et al., 2018), and therefore tend to 783 

perform better in arid conditions. The lack of model skill in simulating hydrological processes in 784 

dry conditions is a general limitation of LSMs (Beck et al., 2016, 2017; Poltoradnev et al., 2018) 785 

but it can also be linked to biases in the meteorological estimates and the soil-water hydraulics 786 

limitations mentioned above. Further work is needed to understand if these results can be 787 

generalized across a broader set of dry environments.  788 

 789 

The results showed that the merged soil moisture can be sensitive to changes in the contribution 790 

of the instantaneous and the long-term differences between the model and observed brightness 791 

temperatures (Figure 10). This is the case for the Little River and Walnut Gulch watersheds 792 

where there was significant soil moisture and brightness temperature bias between the estimates, 793 

albeit that HydroBlocks performed very well on Little River, and SMAP performed very well on 794 

Walnut Gulch. In this context, at Walnut Gulch the instantaneous contributions (via the 795 

innovation term) provide more benefit to the merging than the long-term contributions (via the 796 

forecast bias term). Conversely, at Little River the merging benefited more from the long-term 797 

contributions than the instantaneous contribution. While the model and satellite performance 798 

vary from place to place, we adopted a 0.5 w1 and w2 weight as a compromise between the 799 

temporal contribution of the instantaneous and the long-term differences between observed and 800 
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modelled brightness temperature. This pair of weights resulted in an overall improvement in 801 

SMAP performance, as shown in the evaluation results in Figure 9 and Figure 10.  802 

 803 

The impact of the forecast bias between the model and satellite observation on the merged soil 804 

moisture has also been identified by previous SMAP and SMOS studies (Reichle et al., 2004; De 805 

Lannoy et al., 2007; Kumar et al., 2012). Similarly, a typical approach is to rescale the soil 806 

moisture time series by subtracting the standardized forecast bias from the estimates before the 807 

assimilation (Reichle et al., 2004). For this study we used a 0.5 weight, however, a more 808 

consistent and transferable way forward is to consider which aspects of the landscape, 809 

hydroclimate, and human activities (i.e. irrigation) lead to the instantaneous and long-term 810 

differences between the model and satellite observations. If the contribution of the instantaneous 811 

and long-term brightness temperature differences can be modeled based on these aspects, this 812 

can potentially reduce the sensitivity of the merged soil moisture to uncertainties in the model 813 

and satellite estimates (Kolassa et al., 2017). In addition, extending the evaluation over a broader 814 

domain of soils, land cover, and climate conditions could provide further guidance on the skill 815 

and uncertainties of the soil moisture products, as shown in Draper et al. (2012).  816 

 817 

 5.  Summary and Conclusions 818 

 819 

Soil moisture monitoring and prediction have essential implications for water management, but it 820 

is also one of the most challenging surface processes to predict. It varies highly in space and 821 

time, as a result of being tied to the spatial heterogeneity of the landscape in terms of 822 

topography, soil properties, land cover, and variations in microclimates. Several statistically and 823 
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physically-based techniques to downscale soil moisture have been proposed (e.g., Peng et al., 824 

2017), including using fully distributed land surface models (e.g. Sahoo et al., 2013; Garnaud et 825 

al., 2016). However, previously proposed downscaling techniques often do not physically 826 

represent the land surface processes in an integrated manner (i.e., statistical and machine learning 827 

based models) or do not account for the fine-scale heterogeneity of the landscape (i.e., coarse-828 

scale global LSMs). In addition, model-based downscaling techniques relying on fully 829 

distributed hydrological models can be extremely computational costly when applied at fine-830 

scales over continental domains.  831 

 832 

In this work, we introduced a physically-based downscaling framework that combines hyper-833 

resolution land surface modeling, radiative transfer modeling, and spatial Bayesian merging. 834 

Specifically, we take advantage of the HRU concept of hyper-resolution modeling to reduce the 835 

dimensionality of the system. This leads to efficient modeling and merging of remotely sensed 836 

hydrological processes. The proposed hyper-resolution assimilation concept can be extended to 837 

more robust multi-scale dynamic assimilation using, for instance, Ensemble Kalman filter. It can 838 

also be extended to assimilate other remotely sensed retrievals, with or without the need for 839 

coupling the LSM with an RTM. For instance, this HRU-based merging framework can be 840 

applied to assimilate the radiative observations via an RTM, as for retrievals of soil moisture, 841 

land surface temperature, and snow water equivalent. Or it can be applied to directly assimilate 842 

the remotely sensed retrievals without coupling the LSM to an RTM, as for estimates of 843 

evapotranspiration, canopy temperature, vegetation indices (i.e. LAI), groundwater storage, 844 

among others. 845 

 846 
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Here, we demonstrated this framework by downscaling SMAP soil moisture estimates to an 847 

unprecedented 30-m spatial resolution by coupling HydroBlocks LSM to a Tau-Omega RTM. 848 

The downscaled framework showed excellent performance in accounting for the soil moisture 849 

temporal dynamics and spatial heterogeneity. When compared to in-situ observations, the 850 

downscaled product showed a consistent overall high correlation above 0.81 and average KGE 851 

scores of 0.56, with better performance than SMAP-L3 and SMAP-L4 overall. We also 852 

quantified the sensitivity of the merging framework to the relative contribution of the 853 

instantaneous and the long-term differences in model and observed brightness temperature. The 854 

sensitivity analysis was performed by varying the weights in the innovation and forecast bias 855 

terms when merging HydroBlocks and SMAP brightness temperature. We found that a balance 856 

between the temporal contribution of the instantaneous and the long-term differences in 857 

brightness temperature yields an overall good soil moisture KGE score with added value to the 858 

SMAP estimates. 859 

 860 

The proposed merging framework leverages SMAP potential by providing high-resolution and 861 

accurate soil moisture estimates that are relevant for field-scale water resources decision making. 862 

For instance, 30-m soil moisture data can improve estimates of agricultural yields and water 863 

demand at field scale (Ines et al., 2013; Fisher et al., 2017; Zhao et al., 2018; Waldman et al., 864 

2019). If we fully trust SMAP estimates and do not bias correct the brightness temperature 865 

estimates, the 30- downscaled soil moisture can help track the large-scale impact of human 866 

activities, such as irrigation (Mathias et al., 2017; Lawston et al., 2017; Dirmeyer and Norton, 867 

2018). The spatiotemporal distribution of soil moisture can help monitoring the spatial 868 

distribution of species (Tromp-van Meerveld et al., 2006; Reich et al., 2018), and epidemic 869 
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diseases (Beck et al., 2000; Rinaldo et al., 2012). By taking into account the fine-scale variability 870 

of soil moisture extremes, fine-scale soil moisture can improve the forecast skill of extreme 871 

hydrologic events such as droughts (van Dijk et al., 2013; Sheffield et al., 2014; Sadri et al., 872 

2018; Blyverket et at., 2019); wildfires (Taufik et al., 2017); as well as flooding and landslides 873 

by providing high-resolution estimates of antecedent soil moisture conditions (Ray and Jacobs, 874 

2007; Pelletier et al.,1997). Fine-scale remotely sensed soil moisture estimates can also help 875 

better quantify the coupling between the surface and the atmosphere (Guillod et al., 2015; Taylor 876 

et al., 2012); as well as improve the soil moisture initialization conditions for numerical weather 877 

forecast systems (Dirmeyer and Halder, 2016). 878 

 879 

The physically-based downscaling framework presented in this study allows for bridging the gap 880 

between coarse-scale satellite retrievals and fine-scale model simulations as we move towards 881 

“everywhere and locally relevant” prediction of hydroclimate processes. In future work, there is 882 

potential to expand this analysis over continental domains and assess the skill of the downscaling 883 

framework over a broader range of soil properties, topography, land cover, and hydroclimate 884 

conditions, as well as its applicability in helping solve key water resources challenges linked to 885 

soil moisture estimates.  886 
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List of Figure Captions 1284 

 1285 

Figure 1. Flow diagram illustrating the HydroBlocks-RTM merging framework. This framework 1286 

is applied to merge the 36-km SMAP L3 observed brightness temperature and subsequently 1287 

retrieve the downscaled soil moisture. It uses the HydroBlocks land surface model, the Tau-1288 

Omega radiative transfer model, and Bayesian merging in the HRU-space to obtain 30-m soil 1289 

moisture estimates. 1290 

 1291 

Figure 2. The proposed approach uses Bayesian merging to combine the HydroBlocks-RTM 1292 

fine-scale brightness temperature estimates (��

) with the 36-km SMAP observed brightness 1293 

temperature (!�) to obtain the optimal brightness temperature estimate (��
�). In this work, the 1294 

merging is performed in the HRU-space, instead of regular grids.  1295 

 1296 

Figure 3. The four experimental watersheds in which we evaluate the downscaled soil moisture 1297 

estimates. The black points represent in-situ soil moisture probes.  1298 

 1299 

Figure 4. Time series of daily soil moisture averaged at the in-situ observational network and 1300 

compared with the basin averaged collocated grid cells. The black line shows the soil moisture as 1301 

observed by the in-situ probes; the red line shows the HydroBlocks LSM top 5-cm soil moisture; 1302 

the orange line shows the SMAP L4 soil moisture; the blue line shows the SMAP-L3 soil 1303 

moisture and the green line the downscaled soil moisture as a result of merging HydroBlocks and 1304 

SMAP L3 brightness temperatures. The right panel shows the respective scatter plots, which 1305 
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summarize the distribution of all records of each product in comparison to the observations for 1306 

each evaluation site. 1307 

 1308 

Figure 5. Mean annual soil moisture of the SMAP L3 product (first column); the SMAP L4 1309 

product (second column); the HydroBlocks LSM (third column); the downscaled product via the 1310 

Bayesian merging (fourth column); and the in-situ observations network (overlaid points) at each 1311 

of the four evaluation sites (lines). 1312 

 1313 

Figure 6. The merged and downscaled soil moisture at Little River, Little Washita, Walnut 1314 

Gulch, Reynolds Creek. Each panel shows the soil moisture zoomed in to a 10 km by 10 km 1315 

domain area for a given time step. 1316 

 1317 

Figure 7. Distribution of the soil moisture spatial standard deviation. The boxplots show the 1318 

distribution of the soil moisture spatial standard deviation at each time step for the in-situ 1319 

observations (grey) and the respective collocated grid cells of SMAP L4 (orange), HydroBlocks 1320 

LSM (red), and the downscaled (green) soil moisture products. The spatial standard deviation at 1321 

a given time was only calculated when data for at least 10 probes and the respective collocated 1322 

grid cells were available simultaneously. The total number of data pairs in time for each 1323 

watershed is reported in the bottom right of the graph.  1324 

 1325 

Figure 8. Soil moisture evaluation against in-situ observations. We calculated the watershed 1326 

spatial average using the soil moisture values at the collocated grid cell of the in-situ 1327 

observations. The analysis covers the period between 2015-2017. The soil moisture products 1328 
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were evaluated in terms of its long-term of the mean squared error (RMSE) and the unbiased 1329 

RMSE (ubRMSE); as well as the bias ratio (β), the variability ratio (7), and the linear Pearson 1330 

correlation (ρ), which represents the components of the Kling-Gupta score (KGE).  1331 

 1332 

Figure 9. KGE score of the soil moisture products evaluated against each in-situ probe. The 1333 

columns show the KGE score for SMAP L3, the SMAP L4, HydroBlocks LSM, and the 1334 

downscaled soil moisture. The best skill performance in terms of KGE is shown in green. The 1335 

three last column shows the difference in KGE between the downscaled soil moisture and the 1336 

SMAP L3, the SMAP L4, and the HydroBlocks LSM. The increase in performance is shown in 1337 

blue.  1338 

 1339 

Figure 10. The sensitivity of the merged soil moisture to changes in the contributions of the 1340 

instantaneous and the long-term differences in model and observed brightness temperature. The 1341 

sensitivity was performed by varying the weights in the innovation term (w1) and the forecast 1342 

bias term (w2) when merging HydroBlocks-RTM and SMAP brightness temperatures. We 1343 

evaluated the merged soil moisture using Pearson correlation, bias ratio, coefficient of variation 1344 

ratio, and KGE score (lines) for each of the watersheds (columns). Each panel evaluates the 1345 

merged soil moisture using different w1 and w2 values (varying from 0 to 1) in the brightness 1346 

temperature merging. The central dot indicates the performance of the merged soil moisture 1347 

product using 0.5 weight for w1 and w2. For correlation and KGE, the optimal merging is shown 1348 

in green; for the bias ratio and the variability component, the optimal is shown in grey. 1349 
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